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Introduction. Freeman Dyson (1923–) was a scholar at Winchester College1

when he first became aware of the remarkable accomplishments of Srinivasa
Ramanujan (1889–1920). When he placed first in a mathematical
competition, for which the prize was the book of his choice, Dyson selected
Hardy & Wright’s An Introduction to Number Theory , the first edition of
which had been published the year before (1938). Hardy, of course, had been
Ramanujan’s principal mentor and collaborator.

In September of 1941, Dyson entered Trinity College, Cambridge as a
seventeen-year-old undergraduate, where his teachers—in wartime decimated
classes of seldom more than three students—were John Littlewood, Abram
Besicovitch, P.A.M. Dirac. . .and Hardy himself. Soon after his arrival at Trinity,
Dyson—first time away from home—began what became his persistent practice
of addressing to his parents (and, after their demise, to his sister) very frequent,
engaging and informative accounts of his activities. Those letters survive.
An annotated selection, dating from October 1941 to April 1978, has been
published as Maker of Patterns: An Autobiography in Letters (2018).

On Tuesday, November 10, 1942, Dyson—in the only one of his letters that
contained even rudimentary mathematical material—described the problem to
which he had devoted most of his time since the preceeding Thursday. The

1 Dyson attended Winchester College (founded 1382) from 1936 until 1941.
He speaks of his experience there always with warm nostalgia, and has claimed
that he acquired there the interests, values and style that have informed his
entire career. Julian Havil—author of a series of brilliant expository books,
starting with Gamma: Exploring Euler’s Constant (2003, with Foreword by
Freeman Dyson)—for thirty years taught mathematics at Winchester.



2 Theory of partitions: Dyson’s “rank” & “crank”

problem marked his first engagement with what he later called his first love:
the theory of partitions. Concerning the origin of the problem:

In 1919, Ramanujan—after study of a list of the number p(n) of unrestricted
partitions of n, from p(1) = 1 to p(200) = 3972999029388, that had recently
been constructed by Major MacMahon—observed2 that

(1) p(4) , p(9) , p(14), p(19), . . . ≡ 0 (mod 5)
(2) p(5) , p(12), p(19), p(26), . . . ≡ 0 (mod 7)
(3) p(6) , p(17), p(28), p(39), . . . ≡ 0 (mod 11)
(4) p(24), p(49), p(74), p(99), . . . ≡ 0 (mod 25)
...

(9) p(116), . . . ≡ 0 (mod 121)
(10) p(99) , . . . ≡ 0 (mod 125)

and on that evidence conjectured that if A = 5a7b11c and 24B ≡ 1 (mod A)
then

p(An + B) ≡ 0 (mod A) : n = 0, 1, 2, . . . (1)

Most frequently encountered of those “Ramanujan congruences” are

p(5n + 4) ≡ 0 (mod 5) (2.1)
p(7n + 5) ≡ 0 (mod 7) (2.2)

p(11n + 6) ≡ 0 (mod 11) (2.3)

amd it was those that were of particular interest to Dyson. Ramanujan was
able to construct proofs of the first two of those congruences, and to sketch
proofs of p(25n + 24) ≡ 0 (mod 25) and of p(49n + 47) ≡ 0 (mod 49), but was
not able to prove (1), which is, in fact, not valid as it stands: in the 1930s,
S. Chowla, working from an expanded version of MacMahon’s list, looked (in
the case n = 0) to the conjectured congruence p(73n + 243) ≡ 0 (mod 73) and
noticed that, while indeed 24 × 243 ≡ 0 (mod 73),

p(243) = 133978259344888 ≡/ 1 (mod 73)

Correct modifications of (1) were devised by G. N. Watson in 1938 and by
(Dyson’s college friend) Oliver Atkin in 1967.

Dyson’s invention and first application of “rank.” Dyson defined the “rank” r(π)
of a partition π of n to be

r(π) = largest element − number of elements

For example, the partitions of 4 (in lexicographic order, as they are supplied
by Mathematica) are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}, and their respective
ranks are {3, 1, 0,−1,−3}. Evidently, for arbitrary n one has

rmax = +(n − 1), realized at {n}
rmin = −(n − 1), realized at {1, 1, 1, . . . , 1}

2 My source here is George Andrews, Theory of Partitions (1976), pages
159–161.
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Dyson noticed that

{3, 1, 0,−1,−3} ≡ {3, 1, 0, 4, 2} (mod 5)

and that {3, 1, 0, 4, 2} is a permutation of the p(4) = 5 numbers {0, 1, 2, 3, 4}.
That observation acquires interest when—taking inspiration from (2.1)—one
looks to the ranks (mod 5) of the p(9) = 30 partitions of 5 + 4. Those (which
Dyson computed by hand, but which are instantly supplied by Mathematica)
are found to comprise a (mysteriously ordered) 6-fold replication of {0, 1, 2, 3, 4}.
Proceeding similarly, Dyson found that the ranks (mod 5) of the p(14) = 135
partitions of 5 × 2 + 4 = 14 comprise a 27-fold replication of {0, 1, 2, 3, 4}, and
that the ranks (mod 5) of the p(19) = 490 partitions of 5× 3+4 = 19 comprise
a 98-fold replication of {0, 1, 2, 3, 4}.

Dyson conjectured, on the basis of this experimental evidence, that the
partitions of 5n + 4, when subjected to the “ranks (mod 5)” process, always
(i.e., for all n) produce an N -fold replication of {0, 1, 2, 3, 4}. Ramanujan’s
first congruence p(5n + 4) ≡ 0 (mod 5) would then follow as an immediate
consequence.

The conjecture gains plausibility/interest when one looks to the second
congruence: p(7n+5) ≡ 0 (mod 7). The partitions of 5 are p(5) = 7 in number:

{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}

and when subjected to the “ranks (mod 7)” process produce {4, 2, 1, 0, 6, 5, 3},
which is a permutation of {0, 1, 2, 3, 4, 5, 6}. The partitions of 7 + 5 = 12 are
p(12) = 77 in number, and when subject to that process produce a
10-fold replication of {0, 1, 2, 3, 4, 5, 6}. The partitions of 7 × 2 + 5 = 19 are
(as previously noted) 490 in number, and by that process produce a 70-fold
replication.3 The second Ramanujan congruence follows immediately from the
conjecture that the pattern persists.

The satisfied optimism with which Dyson reported his accomplishment to
his parents may owe something to the circumstance that he had yet to examine
the third congruence p(11n + 6) ≡ 0 (mod 11), which—though it shares the
structure

p
(
p(B)n + B

)
≡ 0

(
mod p(B)

)

of the first two congruences—Ramanujan himself had failed to prove. As it
happens, and as Dyson was well aware then he published his discovery,4 his
method fails when applied to the third congruence, and for a very simple reason.

3 All of which the 18-year-old Dyson worked out by hand, in what must have
been a very busy five days.

4 “Some guesses in the theory of partitions,” Eureka (Cambridge) 8,
10–15 (1944). That paper—Dyson’s fifth publication—is reproduced in Selected
Papers of Freeman Dyson, with Commentary (1996), pages 51–56, with richly
informative commentary on pages 2–5. Eureka was a student publication.
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The partitions of 6 are p(6) = 11 in number and, when subjected (most
conveniently with the assistance of Mathematica) to the “ranks (mod 11)”
process, produce {5, 3, 2, 1, 1, 0, 5, 5, 4, 3, 1}, in which there are repetitions, and
which is therefore not a permutation of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

In “Some guesses. . . ”4 Dyson phrased his remarks in terms of the functions

N(m, n) = number of partitions of n with rank m

N(m, q, n) = number of partitions of n with rank ≡ m (mod q)

He uses numerical evidence to develop patterns displayed by those functions,
and—drawing heavily upon material borrowed from Hardy & Wright—casts
those patterns in the language of generating functions. He is led from those
exposed patterns to this statement: “I hold in fact that there exists an
arithmetical coefficient similar to, but more recondite than, the rank of a
partition; I shall call this hypothetical coefficient the “crank” of the partition,
and [shall write]

M(m, q, n) = number of partitions of n with crank ≡ m (mod q)”

He proceeds to list anticipated properties of the function M(m, q, n), and
concludes his paper with these words: “Whether these guesses are warrented
by the evidence, I leave to the reader to decide. Whatever the final verdict
of posterity may be, I believe that the “crank” is unique among arithmetical
function in having been named before it was discovered. May it be preserved
from the ignominious fate of the planet Vulcan!.”5

Discovery of “crank.” Finally, in 1988, after an interval of 44 years, George
Andrews,6 working in collaboration with his student Frank Garvan, devised a
definition of “crank” which possessed all of Dyson’s anticipated properties, the

5 Dyson’s paper—which provides only conjectures, “guesses” (no proofs)—
begins with these words: “Professor Littlewood, when he makes use of an
algbraic identity, always saves himself the trouble of proving it; he maintains
that an identity, if true, can be verified in a few lines by anybody obtuse enough
to feel the need of verification. My objective in the following pages is to confute
this assertion. . . . I state certain properties of partitions which I am unable to
prove: these guesses are then transformed into algebraic identities which are
also unproved (though supported by numerical evidence); finally, I indulge in
some even vaguer guesses which I am not only unable to prove but unable to
state. I think this should be enough to disillusion anyone who takes Professor
Littlewood’s innocent view of the difficulties of algebra.” Dyson’s conjectures,
so far as they relate to the first pair of Ramanujan congruences, were proven
correct by his friends Oliver Atkin and Peter Swinnerton-Dyer in 1953.

6 Andrews (1938–), leading expert on the theory of partitions2 and discoverer
of Ramanujan’s “Lost Notebook,” grew up in Salem, Oregon and graduated
from Oregon State University.
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structure of which Dyson reportedly found to be quite surprising: the Andrews/
Garvan definition of the “crank” c(π) of a partition π of n reads

c(π) =
{

largest element : ω(π) = 0
µ(π) − ω(π) : ω(π) > 0

where
ω(π) = number of 1’s in π

µ(π) = number of elements > than ω(π)

Evidently, for arbitrary n one has

cmax = +n, realized at {n}
cmin = −n, realized at {1, 1, 1, . . . , 1}

On page 2 we looked to the partitions {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}
of 4 and found their respective ranks to be {3, 1, 0,−1,−3}. Their respective
cranks are {4, 0, 2,−2,−4}. Where we had

{3, 1, 0,−1,−3} ≡ {3, 1, 0, 4, 2} (mod 5)

as a description of the process “ranks (mod 5)” we now have

{4, 0, 2,−2,−4} ≡ {4, 0, 2, 3, 1} (mod 5)

as a description of the process “cranks (mod 5),” a process that has again
produced a permutation of {0, 1, 2, 3, 4}. Looking to the 7 partitions of 5, we
were led by ranks (mod 7) to

{4, 2, 1, 0,−1,−2,−4} ≡ {4, 2, 1, 0, 6, 5, 3} (mod 7)

and are led by cranks (mod 7) to

{5, 0, 3,−1, 1,−3,−5} ≡ {5, 0, 3, 6, 1, 4, 2} (mod 7)

which again a permutation of {0, 1, 2, 3, 4, 5, 6}. Nothing thus far appears to be
lost were we to abandon “rank” in favor of “crank.” But in connection with the
third congruence p(11n + 6) ≡ 0 (mod 11) it was remarked already on page 4
that ranks (mod 11) supplies

{5, 3, 2, 1, 1, 0,−1,−1,−2,−3,−5} ≡ {5, 3, 2, 1, 1, 0, 10, 10, 9, 8, 6} (mod 11)

which is not a permutation of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Cranks (mod 11), on
the other hand, produces

{6, 0, 4,−1, 3, 1,−3, 2,−2,−4,−6} ≡ {6, 0, 4, 10, 3, 1, 8, 2, 9, 7, 5} (mod 11)

where {6, 0, 4, 10, 3, 1, 8, 2, 9, 7, 5} is such a permutation; the repetitions that
afflicted ranks (mod 11) have been avoided. Application of cranks (mod 11) to
the 297 partitions of 11×1+6 = 17 produces 27 replications of {0, 1, 2, . . . , 10};
application to the 3718 partitions of 11× 2 + 6 = 28 produces 338 replications.
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We conclude that, on replacing “rank” by “crank,”Dyson’s argument serves
not simply to prove but to explain all three of Ramanujan’s congruences (2).
Whether it can be used to establish all of Ramanujan’s conjectured congruences
(1) remains an open question, one not considered by Dyson.

Alternatives to the Andrews-Garvan definition of “crank” have been
proposed. It has been reported that a close reading of the Lost Notebook
shows Ramanujan himself to have been aware of partitions dissections similar
to those produced by crank.

Rank revisited: Dyson’s “New symmetries. . . ” “Unrestricted partitions of n” are
most commonly understood to be sets π of positive integers that sum to n. But
contexts do arise—for exmple,

(x + y + z)3 =x3y0z0 + x0y3z0 + x0y0z3

+ 3x2y1x0 + 3x2y0z1 + 3x0y2x1

+ 3x1y2z0 + 3x1y0z2 + 3x0y1z2 + 6x1y1z1

where (if order is disregarded) the partitions of 3 are {3, 0, 0}, {2, 1, 0}, {1, 1, 1}
—where it is natural to include one or more 0’s among the elements of π.
It becomes necessary, therefore, to distinguish unrestricted positive partitions
from unrestricted non-negative partitions. Or, if we understand the “order” of a
non-negative partition to be its number of 0 elements, to distinguish partitions
of 0-order from those with order > 0.

Dyson, on sabbatical in 1968 from the Institute for Advanced Study, taught
astrophysics at Yeshiva University. It had been his habit to “take occasional
short holidays from physics and return to my first love, the theory of numbers,”
and it was after such a digression that (April 21, 1968) he wrote “Today I
discovered a little theorem which gave me some intense moments of pleasure.
It is beautiful and fell into my hand like a jewel from the sky.” By “a little
theorem” he refers to the substance of “A new symmetry of partitions,”7

The generative idea is explore the (surprisingly rich) body of material that
results when “rank” is brought to the study of non-negative partitions. The
discussion culminates in an elementary derivation of Euler’s Pentagonal Number
Theorem (1775).

We look, by way of preparation, to the ranks of positive partitions. Let

p(m, n) = number of positive partitions of n with rank m

As previously remarked,

p(m < −n, n) = p(m > n, n) = 0
p(m = 1 − n, n) = p(m = n − 1, n) = 1

7 J. Comb. Theory 7, 56–61 (1969), reprinted in Selected Papers, 109–114.
The paper feeds on numerical evidence, the production of which—in those
pre-computer days—must have involved a good deal of fairly heavy labor, so
“fell from the sky” can hardly be a fair description of Dyson’s experience.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 2 1 2 1 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 2 1 3 1 2 1 1 0 1 0 0 0 0
0 0 0 1 0 1 1 2 2 3 2 3 2 2 1 1 0 1 0 0 0
0 0 1 0 1 1 2 2 3 3 4 3 3 2 2 1 1 0 1 0 0
0 1 0 1 1 2 2 4 3 5 4 5 3 4 2 2 1 1 0 1 0

Table 1: Tabulated values of p(m, n). Columns are labeled
m =−10,−9, . . . , ,+9, +10, rows are labeled n = 0, 1, 2, . . . , 10.

Note the bilateral symmetry with respect to the m = 0 column:

p(−m, n) = p(+m, n)

Every partition π of n possess some rank, so
∑

m

p(m, n) = p(n)

whichchecks out; for example, the numbers on the bottom row sum to 42 = p(10).

Appending a 0 to a partition decreases its rank by 1. From the partitions
{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1} we obtained the n = 4 row in Table 1.
Appending solitary 0’s produces {4, 0},{3, 1, 0},{2, 2, 0},{2, 1, 1, 0},{1, 1, 1, 1, 0}
—distinct (non-negative) partitions of 4 (the partition of order 1), and sends

0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0
to

0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0

Every n possesses non-negative partitions of every order. We are led thus (in
the case n = 4, adjoining 0’s one at a time) to construct

0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Adding the numbers in the respective columns, we obtain a description

5 5 5 5 5 5 5 5 4 4 3 2 1 1 0 0 0 0 0 0 0

of the number of members of the set of non-negative partitions (of unrestricted
order) of n = 4 that have rank m.8 Proceeding in this way (with the valuable
assistance of Mathematica) we construct the following tabulation of values
assumed by

q(m, n) = number of non-negative partitions of n with rank m

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 1 1 0 0 0 0 0 0 0
3 3 3 3 3 3 3 2 2 1 1 0 0 0 0 0 0
5 5 5 5 5 5 4 4 3 2 1 1 0 0 0 0 0
7 7 7 7 7 6 6 5 4 3 2 1 1 0 0 0 0
11 11 11 11 10 10 9 8 6 5 3 2 1 1 0 0 0
15 15 15 14 14 13 12 10 9 6 5 3 2 1 1 0 0
22 22 21 21 20 19 17 15 12 10 7 5 3 2 1 1 0

Table 2: Tabulated values of q(m, n). Columns are labeled
m = −8,−7, . . . , ,+7, +8, rows are labeled n = 0, 1, 2, . . . , 8.
Boldface 0 idenifies the m = 0 column.

The design of the n = 0 row reflects the fact that, while 0 has no positive
partition, it has any number of non-negative partitions, with rank({0}) = −1,
rank({0, 0}) = −2, etc.

Jewels from the sky. These are patterns latent in the infinite table of which
Table 2 is a finite sample, patterns evident to the eye of a “maker of patterns”
such as Dyson called himself in the title of his autobiography, properties of the
function q(m, n), “new symmetries of partitions.”

Natural emergence of p(n) The values assumed by p(n) at 1, 2, 3, . . . , 8 are
1, 2, 3, 5, 7, 11, 15, 22. We see those numbers marching down the antidiagonal
that terminates at (m, n) = (1, 0), and along the horizontal rows that terminate
at that antidiagonal. In short,

q(m, n) = p(n) : m ! −(n − 1) (3.1)

Also q(m, n) = 0 : m " n (3.2)

Less obviously (look to the region bounded on the left by by that antidiagonal
and on the right by the diagonal that terminates at (m, n) = (−1, 0))

q(m, n) + q(1 − m, n) = q(1 + m, n) + q(−m, n) = p(n) (3.3)

8 The boldface 3 locates the position of m = 0.
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from which it follows in particular that

q(1, n) + q(0, n) = p(n) (3.4)

Equations (3) hold at/below the point (m, n) = (0, 1) where the diagonal and
antidiagonal intersect; i.e., for n " 1. That is because at n = 0 we encounter an
anomaly: the table supplies q(0, 0) = q(1, 0) = 0 while, by analytically natural
convention,9 p(0) = 1.

“Slant symmetry” At issue here is the symmetry illustrated by the parenthetic
entries in the following repetition of Table 2:

(1) 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 (1) 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 2 2 2 (2) 2 2 1 1 0 0 0 0 0 0 0 0
3 3 3 3 3 3 (3) 2 2 1 1 0 0 0 0 0 0
5 5 5 5 5 5 4 4 (3) 2 1 1 0 0 0 0 0
7 7 7 7 7 6 6 5 4 3 (2) 1 1 0 0 0 0
11 11 11 11 10 10 9 8 6 5 3 2 (1) 1 0 0 0
15 15 15 14 14 13 12 10 9 6 5 3 2 1 (1) 0 0
22 22 21 21 20 19 17 15 12 10 7 5 3 2 1 1 (0)

Note that the symmetry is “slant bilateral” with respect (not to the m = 0
column, but) to the m = −1 column. Slant symmetry10 can be formulated

q(m, n) = q(−m − 2, n − m − 1) (4)

But by (3.3) = p(n) − q(1 − m, n)

so q(1−m, n) = p(n)− q(−m− 2, n−m− 1), which by notational adjustment
becomes

q(m, n) = p(n) − q(m − 3, n + m − 2) (5.1)

Arguing similarly from q(−m − 2, n − m − 1) = p(n) − q(1 − m, n), we obtain

q(m, n) = p(n − m − 1) − q(m + 3, n − m − 1) (5.2)

Mathematica confirms the validity of (5.1) whenever n + m − 2 " 0, and that
of (4) and (5.2) whenever n − m − 1 " 0.

9 The situation here is analogous to the convention 0! = 1, which is made
natural by the strtucture of Taylor’s theorem and by the value assumed by the
right side of n! = Γ (n + 1) at n = 0.

10 The “adjoint” π ′ of a positive partition π of n is produced by transposing
the Ferrer diagram of π. Non-positive partitions do not possess Ferrer diagrams.
Dyson, however, has invented a work-around that permits him to say that “slant
symmetry is simply adjoint symmetry.”
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Recursive constructions of q(m, n) Feeding (5.1) into itself once/twice gives

q(m, n) = p(n) − p(n + m − 2) + q(m + 6, n + 2m − 7)
= p(n) − p(n + m − 2) + p(n + 2m − 7) − q(m + 6, n + 3m − 15)

whence
q(m, n) =

∑

k=0

(−1)kp(n + km − φ(k)) (6.11)

Assume φ(k) = αk2 + βk + γ, require φ(1) = 2, φ(2) = 7, φ(3) = 15 and get

φ(k) = 1
2k(3k + 1) (6.12)

Proceeding similarly from (5.2) we find

q(m, n) = p(n − m − 1) − p(n − 2m − 5) + p(n − 3m − 12)
− q(m + 9, n − 3m − 12)

whence
q(m, n) =

∑

k=1

(−1)k−1p(n − km − ψ(k)) (6.21)

where ψ(k) = αk2 + βk + γ and ψ(1) = 1, ψ(2) = 5, ψ(3) = 12 entail

ψ(k) = 1
2k(3k − 1) = φ(−k) (6.22)

One has p(n < 0) = 0, so the series (6.11) and (6.21) invariably terminate.

Typically (but not invariably) (6.1) and (6.2) assemble q(m, n) in distinct
ways. For example, both give

q(−1, 10) = p(10) − p(7) + p(1)
= 42 − 15 + 1 = 28

But (6.1) produces
q(−5, 10) = p(10) − p(3)

= 42 − 3 = 39

while (6.2) gives

q(−5, 10) = p(14) − p(15) + p(13) − p(8) + p(1)
= 135 − 176 + 101 − 22 + 1 = 39

Their applications to slant-symmetric mates are, however, complementary. For
example, in the case q(−4, 5) = q(2, 8) = 7 they produce (respectively)

q(−4, 5) =
{

p(5)
p(8) − p(8) + p(5)

q(2, 8) =
{

p(8) − p(8) + p(5)
p(5)
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Figurate numbers. Interest in “figurate numbers,” which arise when one looks
to successively larger generations of Triangular/Square/Pentagonal/Hexagonal
arrays of points, apparently extends back to the very beginnings of mathematics.
The following display (due reportedly to Pythagorus)

T (1) = 1
T (2) = T (1) + 2
T (3) = T (2) + 3
T (4) = T (3) + 4
T (5) = T (4) + 5

S(1) = 1
S(2) = S(1) + 3
S(3) = S(2) + 5
S(4) = S(3) + 7
S(5) = S(4) + 9

P (1) = 1
P (2) = P (1) + 4
P (3) = P (3) + 7
P (4) = P (3) + 10
P (5) = P (4) + 13

H(1) = 1
H(2) = H(1) + 5
H(3) = H(2) + 9
H(4) = H(3) + 13
H(5) = H(4) + 17

illustrates the recursive construction of figurate numbers. In the Triangular case
the additive terms (or “gnomon”) increase by increments of 1, in the Square
case by increments of 2, in the Pentagonal case by increments of 3, in the
Hexagonal case by increments of 4, etc. Fitting the resulting low-order data to
polynomials of lowest feasible order, we obtain

T (n) = 1
2n(n + 1)

S (n) = n2

P (n) = 1
2n(3n − 1) = 1

3T (3n − 1) (7)
H(n) = n(2n − 1)

Which brings us to the point of this digression; namely, to the recognition
that the numbers ψ(k) = 1

2k(3k − 1) encountered at (6.22) are pentagonal
numbers, while the numbers φ(k) = 1

2k(3k + 1) = ψ(−k) encountered at (6.12)
are “generalized” pentagonal numbers. Here are the pentagonal numbers for
−5 ! n ! 5:

. . . , 40, 26, 15, 7, 2, 0, 1, 5, 12, 22, 35, . . .

The relationship (7) between pentagonal and tringular numbers is holds even
for negative values of n.

Generators of q(m,n). The discussion proceeds from (6) and from this elementary
remark: if we write H(x) =

∑∞
n=0 p(n)xn to generate the partition numbers

p(n), and if ν is a non-negative integer, then

H(x)xν =
∞∑

n=0

p(n)xn+ν =
∞∑

n=ν

p(n − ν)xn

=
∞∑

n=0

p(n − ν)xn by p(n) = 0 : n ! 0
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From (6.1) we are led therefore to construct

F (x, m) = H(x)
∞∑

k=0

(−1)kx−mk+ 1
2 k(3k+1) (8.1)

and from (6.2) to construct

G(x, m) = H(x)
∞∑

k=1

(−1)k−1xmk+ 1
2 k(3k−1) (8.2)

which we expect to serve as slant-symmetry-equivalent descriptions of the
generator

∑∞
n=0 q(m, n)xn of the numbers q(m, n) that stand in the mth column

of Table 2.

Using Mathematica to check the accuracy of those expectations,11 we find
that

F (x, m) = correct series
∑

q(m, n)xn for all m < 0

At m = 0 we encounter q(0, 0) = 1 instead of the correct q(0, 0) = 0:

F (x, 0) = 1 + correct series
∑

n=1 q(0, n)xn

At m = 1 we encounter q(1, 0) = 1 instead of the correct q(1, 0) = 0:

F (x, 1) = 1 + correct series
∑

n=1 q(1, n)xn

and for m > 1 we encounter periodically intrusive singular terms:

F (x, 2) = correct series
∑

n=0 q(2, n)xn

F (x, 3) = −1/x + correct series
∑

n=0 q(3, n)xn

F (x, 4) = −1/x2 + correct series
∑

n=0 q(4, n)xn

F (x, 5) = correct series
∑

n=0 q(5, n)xn

F (x, 6) = +1/x5 + correct series
∑

n=0 q(6, n)xn

F (x, 7) = +1/x7 + correct series
∑

n=0 q(7, n)xn

F (x, 8) = correct series
∑

n=0 q(8, n)xn

F (x, 9) = −1/x12 + correct series
∑

n=0 q(6, n)xn

F (x, 10) = −1/x15 + correct series
∑

n=0 q(10, n)xn

11 In numerical work we much truncate the sums that enter into the definitions
(8); we work actually from

F (x, m; α, β) =
α∑

j=0

p(j)x j
β∑

k=0

(−1)kx−mk+ 1
2 k(3k+1)

G(x, m; α, β) =
α∑

j=0

p(j)x j
β∑

k=1

(−1)k−1xmk+ 1
2 k(3k−1)

with α, β set high enough to achieve stability/accuracy up through n = 10.
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Here I display the essential features of an extended list of singular terms:



m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sign − − + + − − + + − −
exp 1 2 5 7 12 15 22 26 35 40





Fitting the first three data points to a quadratic in m, we obtain

exponent(m) = 1
6m(m − 1) ≡ f(m)

which reproduces all the exponential data (and at m = 2, 5, 8, 11, 14 produces
fractions). Singular terms are seen to arise if and only if either m ≡ 0(mod 3)
(i.e., when m = 3p, with p = 1, 2 . . .) or m ≡ 1(mod 3) (i.e., when m = 3p + 1),
and to be absent when m ≡ 2(mod 3). It follows that the F -generator of q(m, n)
is (for m > 1) properly described by this modification of (8.1):

F(x, m)

= H(x)
∞∑

k=0

(−1)kx−mk+ 1
2 k(3k+1)






if m < 0 or m ≡ 2(mod 3)

−(−1)px− 1
6 m(m−1) otherwise,

i.e., if m = 3p or m = 3p + 1

(9.1)

The situation with regard to G(x, m) is complementary. We find

G(x, m) = correct series
∑

q(m, n)xn for all m " 0

For negative values of m we periodically encounter spurious singular terms that
enter with the signs and exponents described below:12



−m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sign + + − − + + − − + +
exp 1 2 5 7 12 15 22 26 35 40





Noting that {−2,−5,−8,−11, . . .} ≡ 2(mod 3), so are of the form m = −3p+1;
that {−3,−6,−9,−12, . . .} ≡ 0(mod 3), so are of the form m = −3p; and that
{−1,−4,−7, , 10, . . .} ≡ 2(mod 3), we conclude that the G-generator of q(m, n)
is properly described by this modification of (8.2):

G(x, m)

= H(x)
∞∑

k=1

(−1)kx−mk+ 1
2 k(3k+1)






if m " 0 or m ≡ 2(mod 3)

+(−1)px− 1
6 m(m−1) otherwise,

i.e., if m = −3p or m = −3p + 1

(9.2)

12 Note that the entries in the third row of the following table are, relative to
the preceeding table, shifted one unit to the left. That is because

f(m) = f(−(m − 1))
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Brightest of Dyson’s “jewels from the sky.” At m = 0 we have

F (x, 0) = H(x)
∞∑

k=0

(−1)kx
1
2 k(k(3k+1)) = 1 +

∞∑

n=1

q(0, n)xn (10.1)

where the 1( $= q(0, 0)=0) was previously dismissed as an anomaly. On the other
hand, we (by slant symmetry) have

G(x, 0) = H(x)
∞∑

k=1

(−1)k−1x
1
2 k(k(3k−1))

= −H(x)
−1∑

−∞
(−1)kx

1
2 k(3k+1) = 0 +

∞∑

n=1

q(0, n)xn (10.2)

Subtracting (10.2) from (10.1), we have

H(x)
∞∑

−∞
(−1)kx

1
2 k(3k±1) = 1

or
1

H(x)
=

∞∑

−∞
(−1)kx

1
2 k(3k±1) (11)

where the sign choice in the exponent is arbitrary; since the sum is of the form∑+N
−N , reversing the sign simply reverses the sequence in which the terms are

deployed.

Leibniz, already in 1674, had brought to the attention of J. Bernoulli the
problem of counting the number of ways in which a positive integer can be
written as a sum of such integers, but it was two questions that Phillippe
Naudé le Jeune (French mathematician, 1684–1745) addressed to Euler in about
1740 that sparked what became the theory of partitions. Naudé’s questions were
relatively specific: “In how many ways can the number 50 be written as the sum
of seven distinct positive integers?” and “In how many ways can the number
50 be written as the sum of seven positive integers, equal of unequal?” Euler
approach those and related questions by the method of generating functions.
One of the first fruits of that effort was13

H(x) ≡ 1
(1 − x)(1 − x2)(1 − x3) · · · = 1 +

∞∑

n=1

p(n)xn (12)

In the paper (1741) in which he reported that result, Euler also reported the
experimental result

1
H(x)

= (1 − x)(1 − x2)(1 − x3) · · ·

= 1 − x2 − x5 + x5 + x7 − x12 − x15 + x22 + x26 (13)
− x35 − x40 + x51 + x57 − · · ·

of which he was able to supply a proof only many years later. The signs and

13 It is this and similar results that motivate the convention p(0) = 1.
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in (13) can be obtained by zig-zagging down the following table:

k (−1)k 1
2k(3k − 1) (−1)k 1

2k(3k + 1)

0 0 0
1 − 1 − 2
2 + 5 + 7
3 −12 −15
4 +22 +26
5 −35 −40
6 +51 +57
7 −70 −77
8 +92 +100

At (13) we have a statement of Euler’s pentagonal theorem, proofs of which are
usually fairly intricate.14 At (11) Dyson has arrived by relatively elementary
means at a statement of Euler’s theorem, but his argument does not rise to
the status of “proof”—though he speaks of it in those terms15—since it is
based upon unproven extrapolations from patterns evident in a short table
(Table 2) of computed data. Similarly, Dyson’s highly suggestive account
of where the first pair of Ramanujan congruences come from was based upon
illustrative low-order calculations/conjectures related to those displayed in
Table 1, and acquired the status of proof only with the work of Oliver Atkin
and Peter Swinnerton-Dyer, a decade later.5 It was Dyson’s “rank” that
generated both developments: here the ranks of non-negative integers, there
the ranks of positive integers.

part two

CrankanalogsofDyson’s “newsymmetries.” Dyson wrote “New Symmetries. . . ”
in 1968, twenty years before Andrews and Garvan hit upon a definition of
“crank” that met all the conditions imagined by Dyson in 1944. The invention
of crank permitted construction of a variant of Dyson’s elegantly simple “Some
guesses. . . ” argument that serves to explain not only the first pair but also
the third of Ramanujan’s congruences (2), as was discussed on pages 4–6. It
becomes in this light natural to ask: What would have been the form assumed by
“New Symmetries. . . ” if Dyson had had in hand the Andrews-Garvan definition
of crank? That is the issue to which I now turn.

14 The theorem can be obtained as a corollary of an identity due to Jacobi
which belongs properly to the theory of elliptic functions. Fabian Franklin
(1853–1939, a Johns Hopkins student of Sylvester) devised a widely-admired
elementary combinatorial proof in 1881. See §§19.9 & 19.11 in Hardy & Wright
6th edition, 2008.

15 “New symmetries. . . ” concludes with these words: “This combinatorial
derivation of Euler’s formula is less direct, but perhaps more illuminating, than
the well-known combinatorial proof by Franklin.”
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We encounter at the outset a small problem: if π is a positive partition of
n, with rank m, then the ranks of {π, 0}, {π, 0, 0}, . . . are m− 1, m− 2, . . . This
is what gave rise to the “shift left” principle illustrated on page 7, that enabled
us to extract from Table 1 the data recorded in Table 2, from the latter of
which Dyson abstracted his “new symmetries.” But from the Andrews-Garvan
definition

c(π) =
{

largest element : ω(π) = 0
µ(π) − ω(π) : ω(π) > 0

ω(π) = number of 1’s in π

µ(π) = number of elements > than ω(π)

it follows that if c(π) = m then so do c({π, 0}) = c({π, 0, 0}) = · · · = m. To
restore the “left shift” principle, upon which all else hinges, we adopt this
modified definition

c(π) =
{

largest element : ω(π) = 0
µ(π) − ω(π) − ζ(π) : ω(π) > 0

ω(π) = number of 1’s in π

µ(π) = number of elements > than ω(π)
ζ(π) = number of 0’s in π

which reduces to the Andrews-Garvan crank when π is a positive partition of
n; i.e., when ζ(π) = 0.

With the assistance of Mathematica we construct this crank analog of
Table 1:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0
0 0 0 1 0 1 1 1 1 2 1 2 1 1 1 1 0 1 0 0 0
0 0 1 0 1 1 2 1 2 2 2 2 2 1 2 1 1 0 1 0 0
0 1 0 1 1 2 1 3 2 3 2 3 2 3 1 2 1 1 0 1 0
1 0 1 1 2 2 3 2 4 3 4 3 4 2 3 2 2 1 1 0 1

Table 3: Tabulated values of the crank function p(m, n).
Columns are again labeled m = −10,−9, . . . , ,+9, +10, rows
are labeled n = 0, 1, 2, . . . , 10.

To facilitate comparison of crank results with their rank counterparts I retain
the symbols p(m, n) and q(m, n), but assign to them fresh crank-based meanings.
Here, for example,

p(m, n) = number of positive partitions of n with crank m
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Note that (except at n = 1) we again have bilateral symmetry with respect to
the m = 0 column:

p(−m, n) = p(+m, n) : n "= 1

And that again (because every positive partition π of n possess some crank)

∑

m

p(m, n) = p(n)

The “shift left and add” construction that led from Table 1 to Table 2 leads
now from Table 3 to the following tabulation of values assumed by

q(m, n) = number of non-negative partitions of n with crank m

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 1 1 1 1 0 0 0 0 0 0
3 3 3 3 3 3 2 2 2 1 1 1 0 0 0 0 0
5 5 5 5 5 4 4 3 3 2 2 1 1 0 0 0 0
7 7 7 7 6 6 5 5 4 3 2 2 1 1 0 0 0
11 11 11 10 10 9 8 7 6 5 4 3 2 1 1 0 0
15 15 14 14 13 12 11 10 8 7 5 4 3 2 1 1 0
22 21 21 20 19 17 16 14 12 10 8 6 5 3 2 1 1

Table 4: Tabulated values of q(m, n). Columns are labeled
m = −8,−7, . . . , ,+7, +8, rows are labeled n = 0, 1, 2, . . . , 8.
Boldface 0 idenifies the m = 0 column.

We observe that (compare (3.1) and (3.2))

q(m, n) = p(n) : m ! −n (14.1)
q(m, n) = 0 : m " n (14.2)

Less obviously q(m, n) − q(1 + m, n) = p(m, n) and (compare (3.3))

q(m, n) + q(1 − m, n) = p(n) (14.3)

In particular, q(1, n) + q(0, n) = p(n) (14.4)

Equations (14) hold for n > 1. These equations are formally identical to their
rank-based counterparts, but here the definition of q(m, n) is crank-based,
so they describe new “new symmetries of partitions.” Again we have “slant
symmetry,” as illustrated below, but—compare the table on page 6—it is “slant
bilateral” with respect (not to the m = −1 column but) to the m = 0 column.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 (1) 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
2 2 2 (2) 2 2 2 1 1 1 1 0 0 0 0 0 0
3 3 3 3 3 (3) 2 2 2 1 1 1 0 0 0 0 0
5 5 5 5 5 4 4 (3) 3 2 2 1 1 0 0 0 0
7 7 7 7 6 6 5 5 4 (3) 2 2 1 1 0 0 0
11 11 11 10 10 9 8 7 6 5 4 (3) 2 1 1 0 0
15 15 14 14 13 12 11 10 8 7 5 4 3 (2) 1 1 0
22 21 21 20 19 17 16 14 12 10 8 6 5 3 2 (1) 1

Slant symmetry can now be formulated

q(m, n) = q(−m, n − m) (15)

But by (14.3) = p(n) − q(1 − m, n)

so q(1 − m, n) = p(n)− q(−m, n − m), which by notational adjustment becomes

q(m, n) = p(n) − q(m − 1, n + m − 1) (16.1)

Similarly, q(−m, n − m) = p(n)− q(1 − m, n) gives

q(m, n) = p(n − m) − q(m + 1, n − m) (16.2)

Equations (16) are the crank analogs of (5), but simpler.

From (16.1) if follows by recursion that

q(m, n) = p(n) − p(n + m − 1) + q(m − 2, n + 2m − 3)
= p(n) − p(n + m − 1) + p(n + 2m − 3) − q(m − 3, n + 3m − 6)

whence
q(m, n) =

∑

k=0

(−1)kp(n + km − φ(k)) (17.11)

Assume φ(k) = αk2 + βk + γ, require φ(1) = 1, φ(2) = 3, φ(3) = 6 and get

φ(k) = 1
2k(k + 1) (17.12)

Proceeding similarly from (16.2) we find

q(m, n) = p(n − m) − p(n − 2m − 1) + p(n − 3m − 3) − p(n − 4m − 6) + · · ·

whence
q(m, n) =

∑

k=1

(−1)kp(n + km − ψ(k)) (17.21)

ψ(k) = 1
2k(k − 1) = φ(−k) (17.22)

Note that the pentagonal numbers encountered at (6.12) have at (17.12) been
replaced by triangular numbers.
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Generators of the crank numbers q(m,n). We are led from (17.1) and (17.2),
arguing as before, to introduce the crank functions16

F (x, m) = H(x)
∞∑

k=0

(−1)k x−km+ 1
2 k(k+1) (18.1)

G(x, m) = H(x)
∞∑

k=1

(−1)k−1 xkm+ 1
2 k(k−1) (18.2)

which are expected to provide alternative descriptions of
∑

n q(m, n)xn, the
generator of the numbers q(m, n) that lie in the mth column of Table 4.
With Mathematica’s assistance we find that both of those generators produce
the anticipated results except that both yield q(m ! 1, 0) = 1, whereas in fact
q(m ! 1, 0) = 0. We find, moreover, that neither produces singular terms such
as were encountered on page 12.

Dyson’s derivation of Euler’s pentagonal theorem was seen at (10) to gain
essential leverage from an anomalous property of the rank-based generator
F (x, 0):

expansion of F (x, 0) gives q(0, 0) = 1 (incorrect), while
expansion of G(x, 0) gives q(0, 0) = 0 (correct)

But the crank-based generators F (x, 0) and G(x, 0) are both anomalous

expansion of F (x, 0) gives q(0, 0) = 1 (incorrect)
expansion of G(x, 0) gives q(0, 0) = 1 (incorrect)

Deprived of that leverage, the crank-based theory yields no triangular analog
of the pentagonal theorem.17

16 For numerical work, use

F (x, m; α, β) =
α∑

j=0

p(j)xj
β∑

k=0

(−1)k x−km+ 1
2 k(k+1)

G(x, m; α, β) =
α∑

j=0

p(j)xj
β∑

k=1

(−1)k−1 xkm+ 1
2 k(k−1)

17 The pentagonal theorem

(1 − x)(1 − x2)(1 − x3) · · · = 1 − x − x2 + x5 + x7 − x12 − x15 + · · ·

arises as a corrollary of a Jacobi identity.14 Another corrollary reads

(1 − x2)(1 − x4)(1 − x6) · · ·
(1 − x)(1 − x3)(1 − x5) · · · = 1 + x + x3 + x6 + x10 + x15 + x21 + . . .

which is as close as one can come to a “triangular theorem.”
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The preceeding material is conjectural, since based upon (convincingly
patterned) extrapolations from the numertical data displayed in Tables 3&4.
“Anybody obtuse enough to feel the need of verification”5 has his work cut out
for him, for the proofs, on evidence of Atkin & Swinnerton-Dyer, promise to be
difficult.

part three

Implications of Dyson’s “alternative crank.” Twenty years after the publication
(1969) of “New symmetries. . . ,” Dyson—drawing inspiration from some
(Dyson-inspired) recent work (1986–88) by Andrews and (especially by) Garvan,
whose assitance he acknowledges—published a third contribution18 to this
subject, one in which he actually purports to prove some things.

In that paper, Dyson adopts not the Andrews-Garvan definition of crank
but (without attribution or a word of motivation) a novel construction of what
I will (to emphasize the distinction) call “krank,” which is defined by a set of
three conditionals: given a partition π = {π1, π2, . . . , πs} : πj+1 " πj of an
integer n, let

t(π) =
{π1 − π2 : s > 1

π1 : s = 1

d(π) =
{

t − πt+1 : s > t
t : otherwise

krank k(π) =
{−s : t = 0

d : t > 0

We verify that krank possesses the properties that, in “Some guesses. . . ,
Dyson—44 years previously—had been led to require of it. For the 5 partitions
of 4 we (with the assistaance of Mathematica) we obtain the kranks

{4, 2,−2, 0,−1} = {4, 2, 3, 0, 1}(mod 5)

which is a permutation of {0, 1, 2, 3, 4}. From the 30 partitions of 5× 1 + 4 = 9
we obtain six copies of {0, 1, 2, 3, 4}, and from the 135 partions of 5×2+4 = 14
27 copies, etc. For the 7 partitions of 5 we obtain

{5, 3 − 1, 1,−3, 0,−5} = {5, 3, 6, 1, 4, 0, 2}(mod 7)

which is a permutation of {0, 1, 2, . . . , 6}. From the 77 partitions of 7×1+5 = 12
we obtain 11 copies, and from the 490 partitions of 7× 2 + 5 = 17 we obtain 70
copies. Finally (and which in 1942 Dyson would have found more interesting),
from the 11 partitions of 6 we obtain the kranks

{6, 4, 2, 3,−2,−1, 1,−3,−4, 0,−6} = {6, 4, 2, 3, 9, 10, 1, 8, 7, 0, 5}(mod 11)

which is a permutation of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. From the 297 partitions

18 “Mappings and symmetries of partitions,” J. Combinatorial Theory A51,
169–180 (1989), reprinted in Selected Papers, pages 115–126.
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of 11×1+6 = 17we obtain 27copies, and from the 3718 partitions of 11×2+6 = 28
we obtain 338 copies. So much for the three Ramanujan congruences.

As those examples illustrate,

kmax = +n, realized at {n}
kmin = −n, realized at {1, 1, 1, . . . , 1}

Writing

p(m, n) = number of positive partitions of n with krank m

(where we have again assigned a new meaning to an old symbol) we consruct

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0
0 0 0 1 0 1 1 1 1 2 1 2 1 1 1 1 0 1 0 0 0
0 0 1 0 1 1 2 1 2 2 2 2 2 1 2 1 1 0 1 0 0
0 1 0 1 1 2 1 3 2 3 2 3 2 3 1 2 1 1 0 1 0
1 0 1 1 2 2 3 2 4 3 4 3 4 2 3 2 2 1 1 0 1

Table 5: Tabulated values of the krank function p(m, n).
Columns are again labeled m = −10,−9, . . . , ,+9, +10, rows
are labeled n = 0, 1, 2, . . . , 10. The 0th row is a formal artifact/
placeholder, since krank of the empty set is undefined.

of which only the 1st row differs from Table 3: there p(−1, 1) = 1, p(1, 1) = 0;
here the situation is reversed. Note the symmetry

p(−m, n) = p(m, n) : n > 1

Turning now from positive partitions π = {π1, π2, . . . , πs} to partitions of
the non-negative form {π, 0, 0, . . . , 0}, we observe that

k({0, 0, . . . , 0}) = − number of 0’s

and—to bring the essential “shift left” principle (page 7) into play—adopt this
modified definition of krank:

k({π, 0, 0, . . . , 0}) = k(π) − number of 0’s

We are led then from Table 5 to the following tabulation of the values of (new
definition)

q(m, n) = number of non-negative partitions of n with krank m
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1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
2 2 2 2 2 2 2 1 1 1 1 0 0 0 0 0 0
3 3 3 3 3 3 2 2 2 1 1 1 0 0 0 0 0
5 5 5 5 5 4 4 3 3 2 2 1 1 0 0 0 0
7 7 7 7 6 6 5 5 4 3 2 2 1 1 0 0 0
11 11 11 10 10 9 8 7 6 5 4 3 2 1 1 0 0
15 15 14 14 13 12 11 10 8 7 5 4 3 2 1 1 0
22 21 21 20 19 17 16 14 12 10 8 6 5 3 2 1 1

Table 6: Tabulated values of the krank function q(m, n).
Columns are labeled m = −8,−7, . . . , ,+7, +8, rows are labeled
n = 0, 1, 2, . . . , 8. Boldface 0 idenifies the m = 0 column.

Here the n = 0 row differs from that of Table 4, and the n = 1 row differs
at m = 0 and m = 1, but for n > 1 Tables 4&6 are identical, and display
therefore the same symmetries, give rise to the same generating functions (which
are, however, now released from the exceptions described on page 19). These
krank-based symmetries are distinct from the rank-based symmetries described
in “New symmetries. . . ,” and fail as before to producer Euler’s pentagonal
theorem. But they are no longer conjectured extrapolations from a limited
supply of computed data: for them Dyson is able in “Mappings. . . ” to supply
explicit proofs.


